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... hon-ignorable non-PH does happen!
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Overview

e Recent trials have exhibited noticeable non-PH
e E.g. IPASS, ICON6, ICON7 ...
e Means that the treatment effect depends on time
e Important for interpretation, analysis and design
e Logrank/Cox test may be severely underpowered
e We badly need a more robust test
e Key idea: restricted mean survival time (RMST)
e Develop RMST-based tests of the treatment effect
e Combine with logrank/Cox to get best of both tests
e Investigate power of tests
e An approach to robust trial design
e Conclusions
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IPASS (recon): PFS KM and HR vs. time
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Survival curves estimated using a flexible parametric model, PH(5,5)
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What does the overall hazard ratio mean?

e In the reconstructed IPASS example, the HR
ranges between 0.27 and 2.2 over time

e The overall HR at the time of this analysis is
0.73 (95% CI 0.64, 0.83)

e What does this mean?

e Some people (e.g. Schemper 2009) have
interpreted the overall HR as a type of a
weighted average HR over the event times

e But we think a single HR when there is non-PH
is not interpretable

e Instead we work with RMST

MRC CTU @ UCL




Restricted mean survival time (RMST)

e Suppose we have a set of observed and
censored time-to-event data

e Motivation: it's natural to summarize through
the mean, but we can’t because we haven't
observed the entire survival distribution

e Select a time point, t*, up to which we wish to
compute the restricted mean survival time
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Interpretation of RMST

e Area under the survival curve up to t*
e Can think of it as the ‘t*-year life expectancy’.

e A patient might be told that ‘your life
expectancy with Z disease on X treatment
over the next 18 months is 9 months’

e Or, ‘treatment A increases your life
expectancy during the next 18 months by 2
months, compared with treatment B’
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Estimation of RMST

e The idea of RMST goes back to Irwin (1949)
and Kaplan & Meier (1958)

e There are several methods for estimating it:
e Non-parametric (Kaplan-Meier survival curve)
e Jackknife (Andersen et al 2004)

e From flexible parametric models (Royston &
Parmar 2002, Royston & Lambert 2011)

e In Stata there is predict after stpm2, and
strmst specifically for trials data; also
stpmean for jackknife estimation

e All user-written
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Example: BAO7 in advanced bladder cancer

Kaplan-Meier survival estimates

1.0V
1

HR = 0.68 (0.52, 0.90)

0.50 0.75
I I

0.25
I

(VAV[V]
1

Years since randomization

tre = MV

tre = CMV

MRC CT!




Jackknife RMST estimates for individuals
(t* = 3 years) using stpmean

......
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Flexible parametric models

e Royston & Parmar (2002), Royston & Lambert
(2011), Lambert & Royston (2009)

e Estimates baseline cumulative hazard function
as a smooth (spline) function of time t

e Gives (smooth) estimates of S(t) etc etc
e Less noisy than Kaplan-Meier estimates
e Can include time-dependent treatment effects
e Can include covariate effects
e Stata program stpm?2
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BAO7 again: smoothing by FPM
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Test for treatment effect based on RMST?

e Treatment effect: ARMST = difference in RMST
between two trial arms
e Research minus control

e ARMST and its P-value depend on t*
e Choosing a fixed t* is a poor strategy

e A better approach: find the smallest P-value
for ARMST over a sensible range of t* values

e In BAO7, P = 0.0025 at t* = 1.47 years

e But this P-value is obviously “too small”
e Multiple testing

e What can we do about this?
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A permutation test for RMST difference

e Aim is to correct the minimal P-value from
ARMST for multiple testing

e Randomly permute the treatment label many
times

e In each permuted sample, compute the RMST-
based minimal P-value

e This estimates the “null distribution” of the
P-value

e Determine relative rank position of original P-
value in the “null distribution” of the P-value

e This gives the permutation test P-value
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Approximating the permutation test

e Permutation test is a reasonable approach
e But it has drawbacks

e Random element means the test is not
exactly reproducible from run to run

e Test is slow to compute
e An approximation to the test is helpful
e Derived from the uncorrected P-value
e Simulation in null case (no treatment effect)
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Permutation P-value versus original P-value
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Example: Bladder (BAQ7) trial

e Cox test: P = 0.0069
e RMST original P-value: P = 0.0025
e Permutation test (9999): P = 0.0089 (0.0073, 0.0110)
e Approximate perm. test: P = 0.0087
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The Royston-Parmar (RP) test (1)

e Under some non-PH scenarios the permutation test has
higher power than the Cox/logrank test

e Under PH and (some) non-PH scenarios, the
permutation test has lower power than the logrank/Cox
test

e Can we get the best out of Cox and permutation tests?
e Aim: get good power for PH and non-PH scenarios

e i.e. create a more robust test
e Approach: Royston-Parmar (RP) test, aka combined test

e Key idea: take the smaller of the P-values from the
Cox and approximate permutation tests

e Compute P, = min(PCox: Pperm)
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The Royston-Parmar (RP) test (2)

e Need to adjust P, because it is the smaller of two P-values
e Call the adjusted P, Pgrp
e Estimate Pgp using simulation based on several trial datasets
e Derive an empirical approximation using a beta distribution:
* Pgp = ibeta(P,n ; 1, 1.5)
e For small P, Prp ® P, X 1.5

Have gained something compared with Bonferroni correction,
since Bonferroni would give Pg,, = Pin X 2

Examples
L4 Pmin = 0.05, PRP = 0.074
L4 Pmin = 0.0336, PRP = 0.05
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The Royston-Parmar (RP) test (3):
scenarios used in simulations of power

e A.PH (HR = 1): null case
e B. PH (HR = 0.75)
e Quite common
e Often reasonable in trials with short follow-up time
e C. Non-PH (early effect)
e HR starts <1 and approaches or exceeds 1 over time
e Reasonably common
e E.g. in trials with differently acting treatments
e D. Non-PH (late effect)
e HR starts ~1 for a period then reduces over time
e Less common but not rare
e May occur in screening or prevention trials
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Examples of scenarios (simulated data)
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Simulation results: type 1 error and power

Scenario Dataset n Test

Cox Perm. RP

A(null) GOG111 1000 5.2 4.9 5.3
PATCH1 1000 5.0 5.2 4.8

ICON7 1000 4.8 5.2 4.9

B(PH) GOGI11l 652 92.9 86.7 91.0
PATCH1 1280 92.6 87.7 90.2
ICON7 1240 91.9 88.3 89.8

C (early) GOG111 310 72.5 92.1 90.0
PATCH1 450 74.4 91.9 89.2
ICON7 522 36.9 92.4 89.5

D (lat) GOG111 560 92.7 80.5 90.3

weeveweBenchmark: ~90% power for RP test 24
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Example: Robust design based on RP test

Based on advanced bladder cancer (BA06)
e Estimate or assume control arm survival function
e Recruit 3 years, follow up 3 years

Logrank/Cox test under HR = 0.75 for power 90% at
significance level 5% requires 796 patients (509 events)

RP test under HR = 0.75 for power 90% at significance
level 5% requires 851 patients (544 events)

The “insurance premium” needed for the RP test is
about 100 x (851-796)/796 = 7% in this example

Aims to protect power under many non-PH scenarios
e Particularly, treatments with “early effect”

MRC CTU @ UCL 25

Software

Stata

strmst performs the RP test: submitted to Stata J
stpower rp performs power and sample size calculation
for the RP test: under development, version 1.0 done
stpower rp also plots population survival curves based
on your specified control survival and HR functions

Ask PR if you would like to try out these packages (and
give comments, if possible)
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Conclusions

¢ Difficult to predict whether non-PH will be present or not

e Even if you suspect it will, what shape will the HR
function take over time? Unclear.

e Use of restricted mean survival time facilitates testing
and displaying a generalized treatment effect

e The RP test increases trial power under an early
treatment effect and protects power under several other
scenarios

e RP test requires an “insurance premium” of <10%
increase in sample size
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