

RMST

- Censoring usually precludes estimation of mean survival
- Restricted mean survival time (RMST) has been advocated as an alternative summary for survival curves
- Direct interpretation: RMST_{t*} is the life expectancy at horizon t*
- Treatment effect
 - Difference in RMST (RMSTD)
 - Ratio of RMST (RMSTR)
 - Difference (ratio) of restricted mean time loss (t* RMST_{t*})
- Difference in means more relevant than difference in medians

Karrison Controlled Clinical Trials 2007 Royston & Parmar Statistics in Medicine 2011 Royston & Parmar BMC Medical Research Methodology 2013

Objective

 To obtain empirical evidence on the comparison of treatment effects measured as HR or RMSTD/R in recent oncology randomized trials

Methods

- Systematic review of phase III parallel-group randomized trials in oncology published last 6 mo. of 2014 in selected high impact journals
- Reconstruction of individual patients data (IPD) from published survival curves
- For the primary outcome whenever possible – Priority given to PFS or EFS if co-primary outcomes
- Reanalysis of each trial \rightarrow HR, RMSTD, RMSTR

Selection of Trials Oncology randomized controlled trials ٠ Published last 6 months of 2014 in • New England Journal of Medicine Lancet Oncology Lancet Journal of Clinical Oncology Journal of the American Medical Association Search MEDLINE using Cochrane highly sensitive strategy • Inclusion criteria - Superiority and noninferiority parallel group RCTs - Kaplan-Meier curve for a primary or secondary time-to-event outcome **Exclusion criteria** - Phase I, II, IV; > 2 arms; meta-analyses; reports of secondary, subgroup, or follow-up analyses; Supportive care, palliative care, or prevention trials; - Specific designs (eg. Cluster RCT, cross-over ...)

Estimation of Treatment Effects

- HR
 - Cox proportional hazards regression model
 - Grambsch-Therneau test for the non-proportional hazards
 - Log-rank test of null treatment effect
- RMST
 - t*: minimum of the largest observed event time in each group
 - RMST as area under the KM curve
 - Difference and ratio in RMST
 - Test for null treatment effect: compare RMSTD/SE to a standard normal distribution (same for RMSTR)

Comparison of Treatment Effects

- Comparison of HR and RMSTR (same scale)
- Assess whether a measure is systematically further from the null
- For each trial: ratio HR/RMSTR
- Variance of HR/RMSTR obtained by bootstrap
- Coding so that HR/RMSTR>1 → HR more optimistic than RMSTR
- Meta-analysis of the individual trial ratios
- Subgroup analyses
 - Type of outcome (OS v others)
 - (Non-)proportionality of hazards

Characteristics of the Selected RCTs

- 54 trials
- Selected outcome
 - PFS : 23 (43%)
 - OS : 21 (39%)
 - RFS, FFS, DFS, EFS : 10 (18%)

No. (%)*
11 (20)
4 (7)
2 (4)
22 (41)
15 (28)
29 (54)
17 (31)
8 (15)
11 (20)
9 (17)
6 (11)
6 (11)
6 (11)
6 (11)
3 (6)
2 (4)
2 (4)
3 (6)
0.00
8 (15)
6 (11)
34 (63)
3 (0)
2 (4)
2 (**)
20 1075
10 (07)
10 (33)
51 (94)
3 (6)
0 101
50 (93)
4 (7)
503 (296-764
12 (22)†

Treatment Effect Estimates: HR

- Median HR (Q₁ to Q₃): 0.84 (0.67 to 0.996)
 Range from 0.19 to 1.37
- Proportional hazards
 - Reported as checked (and OK) in 5 (9%) trials
 - We found evidence of NPH in 13 (24%) other trials
- Significant difference in 24 (44%) trials (always in favor of experimental)

Treatment Effect Estimates: RMST

- Median t* 28.3 mo. (range 11 mo. to 10 y)
- Differences in RMST
 - Range from -2.9 to +10.1 mo.
 - Median (Q₁ to Q₃): +1.1 mo. (0.2 to 2.8)
- Ratios of RMST
 - Range from 0.90 to 1.87
 - Median (Q₁ to Q₃): 1.10 (1.01 to 1.20)
- Significant difference for 25 (46%) of trials

Subgroup analyses

- 1.04 [1.00; 1.07] for OS (n=21 trials)
- 1.17 [1.10; 1.23] for others (n=33 trials)

P = .55

- By evidence of non-proportional hazards
 - 1.12 [1.06; 1.19] for NPH (n=13 trials)
 - 1.10 [1.06; 1.15] without NPH (n=41 trials)
- No difference according to sample-size or f-up duration either (post-hoc)

RMST-based v other measures

- RMST-based measures do not rely on specific assumptions such as PH
- And are quite easily interpreted
- Differences in survival probabilities at a specific time point or in median survival times can also be used
 - Interpretable but summarize a curve by one single point
 - In addition the median survival time may be unestimable (16 [30%] in our sample)
- Limitation of RMST is the choice of t*
 - May be predefined in a protocol according to expected data maturity
 - Curves of RMSTD over time have also been proposed but to not provide a single estimate of the benefit

- We used reconstructed IPD
 - Less reliable than the true IPD
 - Unable to perform adjustment / stratification as in some original trials
 - Good reproducibility + agreement with published HRs anyway
- Choice of t*
 - Common strategy for all RCTs without further investigation
 - RMST obtained by KM-integration may become unstable at the right tail
 - Other approaches may be more robust in specific cases (e.g. using flexible models)
- · Restricted to trials published in high-impact journals

