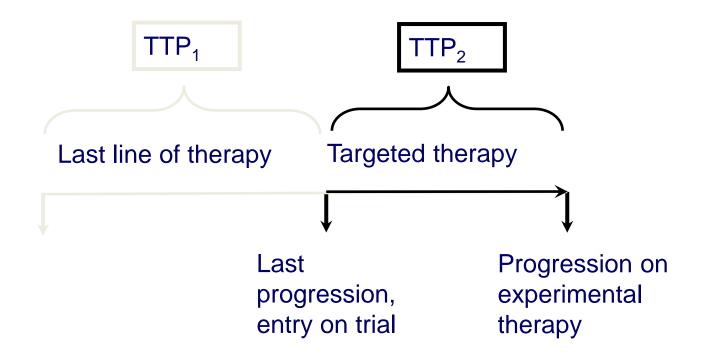
Evaluation of treatment effect with paired failure times in a single arm phase 2 oncology trial

Matthieu Texier¹, Federico Rotolo^{1,2}, Michel Ducreux³, Olivier Bouché⁴, Jean-Pierre Pignon^{1,2} Stefan Michiels^{1,2}

- ¹ Gustave Roussy, Service de Biostatistique et d'Epidémiologie, Villejuif, France
- ² Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM U1018, Villejuif, France
- ³ Gustave Roussy, Gastrointestinal oncology unit, Université Paris-Sud, Villejuif, F-94805, France
- ⁴ University Hospital, Reims, Gastrointestinal unit, France



Phase 2 Trials endpoint

- Goal of phase 2 clinical trials: to estimate activity and toxicity of new anticancer agents
- For cytotoxic agents, most used endpoints are related to the tumor shrinkage
- The problematic is different with a cytostatic agents. Need for an endpoint which takes account of that change

Example of design in a multiple progression framework

- Reference *Von Hoff et al. (2010)*
- Purpose: To compare the time to progression (TTP) using the experimental treatment to the TTP with the most recent regimen on which the patient had experimented progression

Growth Modulation index

- The growth modulation index is defined as the ratio between the time to progression of 2 successive lines of treatment: GMI = TTP2 / TTP1
- The natural history of most advanced tumors suggests that GMI < 1 (patients tend to progress increasingly faster on successive lines of treatment)
- In Von Hoff's article, the trial designed to test the hypothesis that at least 15% of the patients have GMI > 1.3
- Need for correct estimate of the proportion of patients having a GMI superior to a given threshold

Aim of our work

- To propose statistical methods to estimate the proportion of patients having their GMI superior to a given threshold by handling censored observations
- To investigate design parameters which could influence the performance of these estimators

Methods

- We consider a study in which patients enter after having a first progression. Consequently, the time to progression at previous therapy (TTP₁) is always observed by design
- Statistic of interest:

$$S_{GMI}(\delta) = P\left[\frac{TTP_2}{TTP_1} > \delta\right], \qquad \delta \ge 0,$$

- δ is an arbitrary threshold which represents the sign of activity considered clinically relevant

Non-parametric approach

- The non-parametric approach, described in Kovalchik et al (2011), consists in using the ranks of each pair (TTP_1, TTP_2) to estimate $S_{GMI}(1)$. To handle censoring, we used midranks:
- $TTP_{1i}: [L_{1i}; R_{1i}]$ and $TTP_{2i}: [L_{2i}; R_{2i}]$
- $min_{ji}: R_{j(1)} \leq R_{j(2)} \leq \cdots \leq R_{j(min_i-1)} \leq L_{ji} \leq R_{j(min_i)} \leq \cdots \leq R_{j(2n)}$
- $max_{ji}: L_{j(1)} \leq L_{j(2)} \leq \cdots \leq L_{j(max_i)} \leq R_{ji} \leq L_{j(max_i+1)} \leq \cdots \leq L_{j(2n)}$
- Imputation of the midrank: $M_{ji} = \frac{min_{ji} + max_{ji}}{2}$

•
$$\hat{S}_{GMI}(1) = \frac{1}{n} \sum_{i=1}^{n} I(M_{2i} \ge M_{1i})$$

Parametric approach

- By assuming a parametric distribution for the GMI, the probability of interest can be derived as a function of the estimated distribution parameters
- E.g., with Weibull distributed TTPs

$$f_j(x; a, b_j | u_i) = a(u_i b_j)^{-a} x^{a-1} \exp\{-[x/(u_i b_j)]^a\}$$

the GMI has a log-logistic distribution:

$$f(\delta; a, \kappa) = a\kappa^a \delta^{a-1} (1 + (\delta\kappa)^a)^{-2}, \delta \ge 0$$

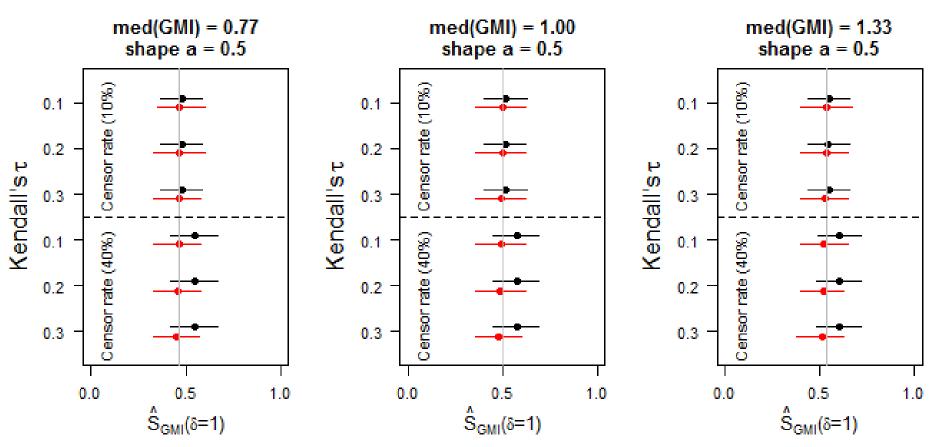
• Maximum likelihood estimates of the parameters can be obtained and used to derive the estimated probability of interest

$$S_{GMI}(\delta; \hat{\alpha}, \hat{\kappa}) = (1 + (\delta^{\kappa})^{a})^{-1}$$

Simulation study

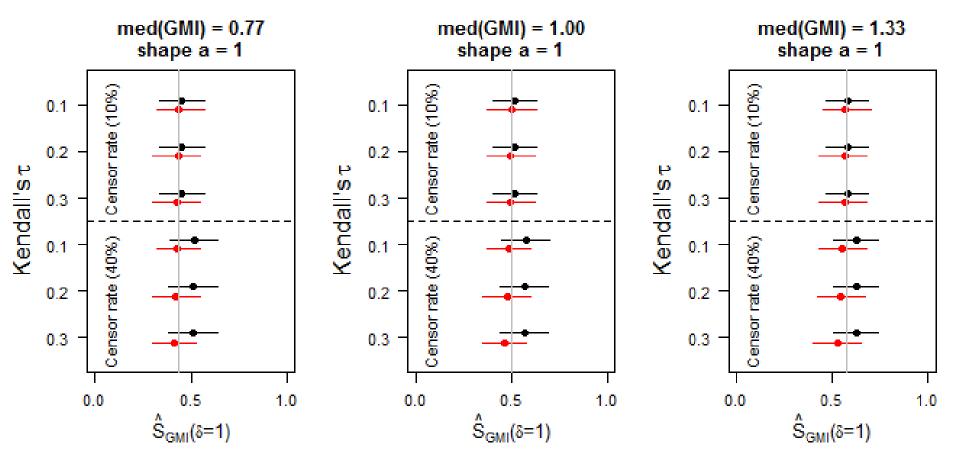
- Objectives: to evaluate the influence of the design parameters on the two estimators
- We varied:
 - The dependence between TTP_1 and TTP_2 (Kendall's τ)
 - The shape of the distribution of TTP
 - The relative effect of second line treatment compared to the first
 - The censoring rate
- The statistical properties were evaluated in terms of mean bias, average standard error and empirical standard error

Data generation

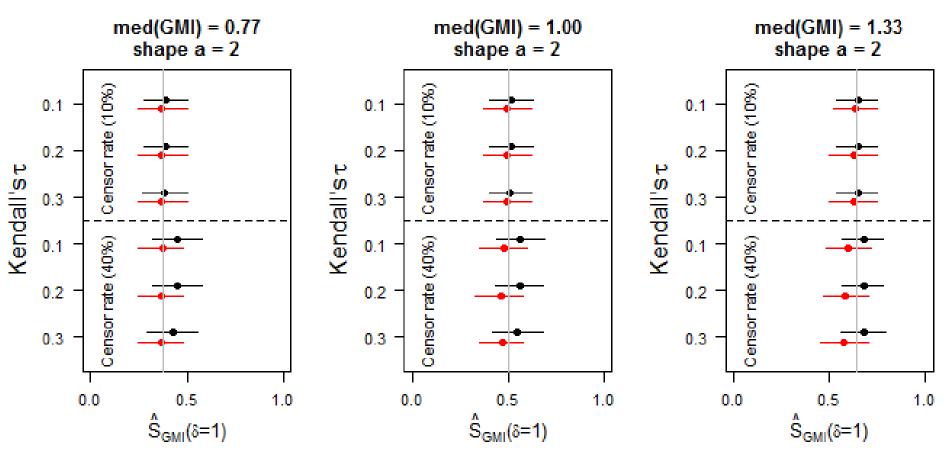

- Generation of a frailty term: $u_i \sim Gamma$
- Generation of TTP from Weibull distribution

$$f_j(x; a, b_j | u_i) = a(u_i b_j)^{-a} x^{a-1} \exp\{-[x/(u_i b_j)]^a\}, \ j = 1, 2$$

with
$$b_1 = e * b_2$$

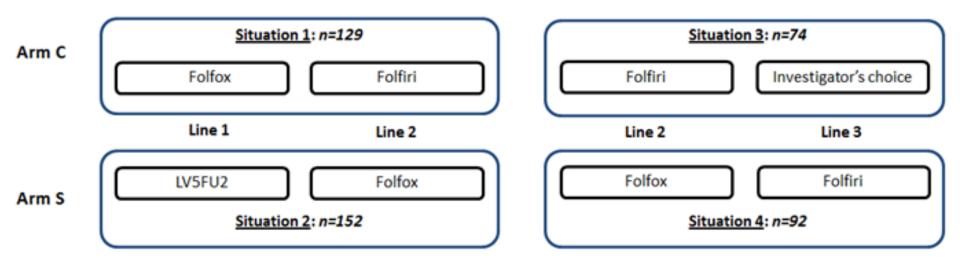

 Generation of censoring (10% and 40% of censored observations)

Result of simulation (1)


Probability $\hat{S}_{GMI}(\delta = 1)$ of GMI being greater than 1 estimated in the simulation study via the parametric (black) and non-parametric (red) methods. Normally approximate 95% confidence intervals using the empirical standard error

Results of simulation (2)

Probability $\hat{S}_{GMI}(\delta = 1)$ of GMI being greater than 1 estimated in the simulation study via the parametric (black) and non-parametric (red) methods. Normally approximate 95% confidence intervals using the empirical standard error

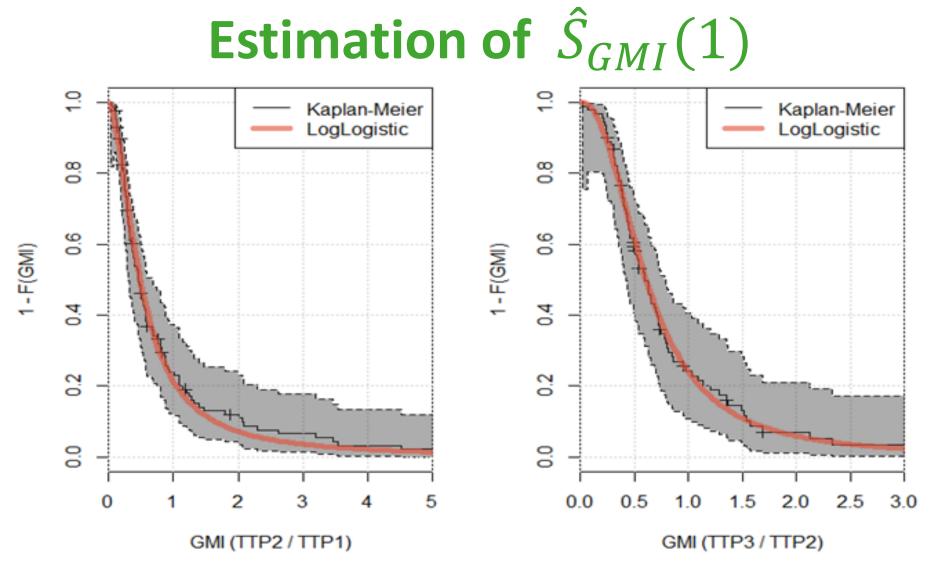

Results of simulation (3)

Probability $\hat{S}_{GMI}(\delta = 1)$ of GMI being greater than 1 estimated in the simulation study via the parametric (black) and non-parametric (red) methods. Normally approximate 95% confidence intervals using the empirical standard error ¹³

Application

• The FFCD 2000-05 trial was a randomized trial conducted by the French Federation of Digestive Oncology, which included 410 patients with advanced colorectal cancer

• Estimation of the dependence between TTP_1 and TTP_2 (Kendall's τ) by modeling the risks of progression by shared frailty models


Dependence between *PFS*₁ **and** *PFS*₂

- Estimation of the Kendall's τ for the 4 situations by modeling the risks of progression by shared frailty models

$$h_{ij}(t|u_i) = h_{0j}(t)u_i \exp(x_{ij}^T \beta)$$

- Gamma distribution assumed for the frailty term
- Weibull distribution assumed for the baseline hazard function

	Kendall's $ au$		
Arm C			
Situation 1	0.195		
Situation 3	0.152		
Arm S			
Situation 2	0.142		
Situation 4	0.225		

Survival function estimate of the growth modulation index (situation 1 on the left, situation 4 on the right) via the Kaplan-Meier method and via a log-logistic distribution. The gray area is the 95% confidence band for the Kaplan-Meier estimate.

Estimation of $\hat{S}_{GMI}(1)$

	Treatment				Estimator	
	Line 1	Line 2	Ν	Events	Parametric	Non parametric
Arm C						
Situation 1	FOLFOX	FOLFIRI	129	114	0.21 [0.14; 0.29]	0.24 [0.17; 0.31]
Situation 3	FOLFIRI	Investigator	74	59	0.52 [0.41;0.63]	0.54 [0.43; 0.65]
Arm S						
Situation 2	LV5FU2	FOLFOX	152	122	0.54 [0.46; 0.62]	0.48 [0.40;0.56]
Situation 4	FOLFOX	FOLFIRI	92	79	0.24 [0.15; 0.33]	0.27 [0.18; 0.36]

Estimation of $S_{GMI}(\delta = 1) = P(GMI > 1)$ for the four situations in the FFCD 2000-05 trial

Discussion

- Few published clinical trials using the GMI as a criterion of activity
 - Rather low correlation of the paired time-to-progression
 - At least in some of them, this may be due to the heterogeneity of the first-line treatment or to the localization of the tumor
- In phase II trials, progressions are generally assessed at fixed times, What about the effect of interval censoring on these methods?
- An increasing number of clinical trials and the EMA admits its use to compare two successive therapies

Bibliography (1)

Von Hoff DD. There are no bad anticancer agents, only bad clinical trial designs--twenty-first Richard and Hinda Rosenthal Foundation Award Lecture. *Clinical Cancer Research* 1998; **4**:1079–1086.

Mick R, Crowley JJ, Carroll RJ. Phase II Clinical Trial Design for Noncytotoxic Anticancer Agents for Which Time to Disease Progression Is the Primary Endpoint. *Controlled Clinical Trials* 2000; **21**:343–359. doi:10.1016/S0197-2456(00)00058-1.

Von Hoff DD, Stephenson JJ, Rosen P et al. Pilot Study Using Molecular Profiling of Patients' Tumors to Find Potential Targets and Select Treatments for Their Refractory Cancers. *Journal of Clinical Oncology* 2010; **28**:4877–4883. doi:10.1200/JCO.2009.26.5983.

Bonetti A, Zaninelli M, Leone R et al. Use of the ratio of time to progression following first- and second-line therapy to document the activity of the combination of oxaliplatin with 5-fluorouracil in the treatment of colorectal carcinoma. *Annals of Oncology* 2001; **12**:187–91.

Ducreux M, Malka D, Mendiboure J et al. Sequential versus combination chemotherapy for the treatment of advanced colorectal cancer (FFCD 2000-05): an open-label, randomised, phase 3 trial. *The Lancet. Oncology* 2011; **12**:1032–44. doi:10.1016/S1470-2045(11)70199-1.

Pénichoux J, Michiels S, Bouché O et al. Taking into account successive treatment lines in the analysis of a colorectal cancer randomised trial. *European Journal of Cancer* 2013; **49**:1882–1888. doi:10.1016/j.ejca.2013.02.006.

Bibliography (2)

Duchateau L, Janssen P. *The Frailty Model*, New York, NY: Springer New York, 2008. doi:10.1007/978-0-387-72835-3.

Munda M, Rotolo F, Legrand C. parfm: Parametric Frailty Models in R. *Journal of Statistical Software* 2012; **51**:1–20. doi:10.18637/jss.v051.i11.

Kovalchik S, Mietlowski W. Statistical methods for a phase II oncology trial with a growth modulation index (GMI) endpoint. *Contemporary Clinical Trials* 2011; **32**:99–107. doi:10.1016/j.cct.2010.09.010.

Dufresne A, Pivot X, Tournigand C et al. Impact of chemotherapy beyond the first line in patients with metastatic breast cancer. *Breast Cancer Research and Treatment* 2008; **107**:275–279. doi:10.1007/s10549-007-9550-7.

Hudgens M, Satten G. Midrank unification of rank tests for exact, tied, and censored data. *Journal of Nonparametric Statistics* 2002; **14**:569–581. doi:10.1080/10485250213905.

Owen WJ. A Power Analysis of Tests for Paired Lifetime Data. *Lifetime Data Analysis* 2005; **11**:233–243. doi:10.1007/s10985-004-0385-9.

Bibliography (3)

Oncology Working Party EMA/CHMP/205/95/Rev.4. Guideline on the evaluation of anticancer medicinal products in man. *European Medicines Agency* 2012; **44**:33.

Penel N, Demetri GD, Blay JY et al. Growth modulation index as metric of clinical benefit assessment among advanced soft tissue sarcoma patients receiving trabectedin as a salvage therapy. *Annals of Oncology* 2013; **24**:537–542. doi:10.1093/annonc/mds470.

Bhattacharya S, Fyfe G, Gray RJ, Sargent DJ. Role of Sensitivity Analyses in Assessing Progression-Free Survival in Late-Stage Oncology Trials. *Journal of Clinical Oncology* 2009; **27**:5958–5964. doi:10.1200/JCO.2009.22.4329.