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• Clinical endpoint: 
a characteristic or variable that reflects how a patient feels, 
functions, or survives 

• Biomarker: 
a characteristic that is objectively measured and evaluated as 
an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic
intervention

• Surrogate endpoint: 
a biomarker that is intended to substitute for a clinical endpoint. 
A surrogate endpoint is expected to predict clinical benefit (or 
harm or lack of benefit or harm)

Refs: Biomarkers Definition Working Group, Clin Pharmacol Ther 2001, 69: 89;
De Gruttola et al, Controlled Clin Trials 2001, 22: 485.

Terminology



Why Do We Need Surrogates?

♦ Practicality of studies: 
• Shorter duration

• Smaller sample size (?)

♦ Availability of biomarkers:
• Tissue, cellular, hormonal factors, etc. 

• Imaging techniques

• Genomics, proteomics, other -omics

Ref: Schatzkin and Gail, Nature Reviews (Cancer) 2001, 3 4



Key point: “A correlate does not a surrogate make”

⇒ correlation between S(urrogate) and T(rue endpoint) is 
not  a sufficient condition for validity

How To Define a Surrogate?

5Ref: Fleming and DeMets, Ann Intern Med 1996, 125: 605.
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A Correlate Does not a Surrogate Make

Ref: Korn, Albert & McShane, Statist Med 2005;24:163
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“The effect of treatment on a surrogate endpoint must be 
reasonably likely to predict clinical benefit”

Validation Based on the Precision of 
Prediction

Ref: Biomarkers Definition Working Group, Clin Pharmacol Ther 2001, 69: 89.



Assume (εTij, εSij)’ ~ N2(0, Σe), with Σe=

Let (μSi , μTi, βi,αi)’ ~ normal.

Define μΔi =(βi,αi)’ ~ N2(μ*
Δ,DΔ), with 

Meta-analytic Approach

8Ref: Buyse et al, Biostatistics 2000
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Prediction of True Endpoint From Surrogate
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R² (or R) 
indicates 
quality of 

regression

Prediction of Treatment Effect: 
Multiple Trials
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(εTij, εSij)’ ~ N2(0, Σe), with Σe=

Define Rind=σTS/(σTTσSS)0.5;  if Rind ≈ ±1, surrogate valid at the individual-level

μΔi =(βi,αi)’ ~ N2(μ*
Δ,DΔ), with 

Define Rtrial=dab/(daadbb)0.5 ;  if Rtrial ≈ ± 1, surrogate valid at the trial-level

Meta-analytic Approach

11Ref: Buyse et al, Biostatistics 2000



181 patients form 36 centers; placebo vs. interferon-α

S: change in visual acuity at 6 mths; T: change at 1 year

Example: Age-related Macular Degeneration

12Ref: Buyse et al, Biostatistics 2000; Alonso et al, Biometrics 2015



Example: Age-related Macular Degeneration

13Ref: Alonso et al, Biometrics 2015



Causal-inference and Validation of 
Surrogate Endpoints

♦ Principal stratification (Frangakis & Rubin, Biometrics 2002)

♦ Causal inference links for “proportion explained” (Taylor et al, Biometrics
2005)

♦ Causal necessity and sufficiency (Gilbert & Hudgens, Biometrics 2008)

♦ Causal paradigms (Joffe & Greene, Biometrics 2009)

♦ Bayesian model, single trial (Li et al., Biometrics 2010)

♦ Bayesian model, multiple trials (Li et al., Biostatistics 2011)

♦ Principal stratification, normal endpoints (Conlon et al., Biostatistics 2013)

♦ “Surrogate paradox” (VanderWeele, Biometrics 2013)

♦ Link to the meta-analytic approach (Alonso et al., Biometrics 2015)
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Subject j Zj T 0j T 1j S 0j S1j

1 0 1 ? 1 ?
2 1 ? 1 ? 1
3 1 ? 0 ? 0
4 0 0 ? 1 ?
5 1 ? 1 ? 1
…

Causal Inference: Potential Outcomes and 
Counterfactuals
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Each subject has two potential outcomes for T: T0j and T1j, 
corresponding to the two treatments (Z = 0,1). Likewise for S.

Only one of these outcomes is observed, the other is counterfactual.
Example: binary data



The causal treatment effect onT for subject j is ΔTj =T1j – T0j. 

The causal treatment effect on S for subject j is ΔSj =S1j – S0j. 

The effects are unobservable, unless special designs, e.g., a 
cross-over trial, are considered. 

Causal Inference: Individual Causal Effects

16



Causal Inference: Expected (Average) 
Causal Effects

17

The expected (average) causal effect on T is β = E(T1j -T0j) = E(ΔTj). 

The expected (average) causal effect on S is α = E(S1j -S0j) = E(ΔSj).

Under Stable Unit Treatment Value Assumption (SUTVA),  and if 

Zj ⊥ (T0j,T1j,S0j,S1j ) (plausible under randomization), then

β = E(Tj |Zj =1) - E(Tj |Zj =0) and α = E(Sj |Zj =1) - E(Sj |Zj =0)

E(Tj |Zj =1), etc.,  can be estimated by the sample means.

Hence, the meta-analytic approach can be seen as the analysis of 
the association of the expected causal effects.



Two paradigms:

-The causal-effects (CE) paradigm, in which knowledge of the effects of the 
treatment on the surrogate and of the surrogate on the clinical outcome is 
used to predict the effect of the treatment on the clinical outcome.

Examples: Prentice (1989); Taylor et al (2005)

-The causal-association (CA) paradigm, in which the effect of treatment on 
the surrogate is associated, across studies or population subgroups, with its 
effect on the clinical outcome, so allowing prediction of the effect on the 
clinical outcome from the effect on the surrogate

Examples: Frangakis & Rubin (2002);  Buyse et al (2000)
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Causal-inference Paradigms for Validation 
of Surrogate Endpoints

Ref: Joffee & Greene, Biometrics 2009



Uses concepts of the direct and indirect effects.

Applicable in  a single-trial setting.

Explains the treatment effect on T 
“mechanistically”.

Drawbacks: 
-Requires (untestable) assumptions.
-Lacks power.
- Effects defined in terms of manipulation of 
the putative surrogate, but in pracitce 
interventions do not directly manipulate the 
surrogate. 

19

The Causal-effects Paradigm

Ref: Joffee & Greene, Biometrics 2009



Considers association between expected causal effects. 

Natural for the meta-analytic seting, though can be considered in a single-trial 
setting (principal surrogacy).

In the meta-analytic setting,  applicable using the observable quantities.

More powerful than the CE paradigm.

Drawbacks: 
- Does not “explain” the treatment effect on T; rather, evaluates its co-
variation with the effect on S.

20

The Causal-association Paradigm

Ref: Joffee & Greene, Biometrics 2009



Frangakis & Rubin (2002):  if no causal effect on S, then no 
effect on T.

Average causal necessity: E(ΔTj|ΔSj  = 0) = 0

Note: values of ΔSj define unobservable principal strata
Example: binary data

Principal Surrogate (1)

21Ref: Frangakis & Rubin, Biometrics 2002; Gilbert and Hudgens, Biometrics 2008; Joffe & Greene, 2009

(T 0j, T1j)
(S 0j, S 1j) (0,0) (0,1) (1,1) (1,0) Principal stratification

(0,0) p 11 p 12 p 13 p 14 Never responders
(0,1) p 21 p 22 p 23 p 24 Improved
(1,1) p 31 p 32 p 33 p 34 Always responders
(1,0) p 41 p 42 p 43 p 44 Harmed



Frangakis & Rubin (2002):  if no causal effect on S, then no 
effect on T.

Average causal necessity: E(ΔTj|ΔSj  = 0) = 0

Note: values of ΔSj define unobservable principal strata
Example: binary data

Principal Surrogate (2)

22Ref: Frangakis & Rubin, Biometrics 2002; Gilbert and Hudgens, Biometrics 2008; Joffe & Greene, 2009

(T 0j, T1j)
(S 0j, S 1j) (0,0) (0,1) (1,1) (1,0) Principal stratification

(0,0) p 11 0 p 13 0 Never responders
(0,1) p 21 p 22 p 23 p 24 Improved
(1,1) p 31 0 p 33 0 Always responders
(1,0) p 41 p 42 p 43 p 44 Harmed



Frangakis & Rubin (2002):  if no causal effect on S, then no 
effect on T.

Average causal necessity: E(ΔTj|ΔSj  = 0) = 0

Gilbert & Hudgens (2008): PS if average causal necessity and

Average causal sufficiency: ∃ ω such that E(ΔTj | ΔSj>ω) >0

Principal Surrogate (3)

23Ref: Frangakis & Rubin, Biometrics 2002; Gilbert and Hudgens, Biometrics 2008;



The causal effect on T  is CET  = p +2 – p +4

The dissociative proportion is defined as DP=((p 12-p 14) + (p 32-p 34)) / CET
The associative proportion is defined as AP=((p 22-p 24) + (p 42-p 44)) / CET

Note : the “proportions” are ratios of differences; their values span [–∞, +∞] 
which is undesirable for a proportion

Ref: Li et al, Biostatistics 2011;12:478.

Dissociative & Associative Proportion

(T 0j, T1j)
(S 0j, S 1j) (0,0) (0,1) (1,1) (1,0) Principal stratification

(0,0) p 11 p 12 p 13 p 14 Never responders
(0,1) p 21 p 22 p 23 p 24 Improved
(1,1) p 31 p 32 p 33 p 34 Always responders
(1,0) p 41 p 42 p 43 p 44 Harmed

24



The dissociative proportion should be 0.

Additionally, for a “perfect” principal surrogate, we would like p 24 and p 42  to 
be 0. Hence, the associative proportion should be 1.

Dissociative & Associative Proportion for a 
Principal Surrogate

(T 0j, T1j)
(S 0j, S 1j) (0,0) (0,1) (1,1) (1,0) Principal stratification

(0,0) p 11 0 p 13 0 Never responders
(0,1) p 21 p 22 p 23

p 24 Improved
(1,1) p 31 0 p 33 0 Always responders
(1,0) p 41

p 42 p 43 p 44 Harmed

25



2626

What Is Observed?

♦ 15 “free” parameters, 6 supported by data

♦ Estimation of , e.g., DP & AP requires (untestable) identifying 
restrictions. 

• For instance, montonicity (p41=p42=p43=p44=p14=p24=p34=0) reduces the 
number of “free” parameters to 8

• Extra assumptions in a form of, e.g., priors in a Bayesian approach

T
Z S 0 1
0 0 p 11+p 12+p21+p 22 p 13+p 14+p23+p 24

1 p 31+p 32+p41+p 42 p 33+p 34+p43+p 44

1 0 p 11+p 14+p41+p 44 p 12+p 13+p42+p 43

1 p 21+p 24+p31+p 34 p 22+p 23+p32+p 33



Consider Yj=(T0j,T1j,S0j,S1j)’ ~ N4(μ, Σ) with μ=(μT0, μT1, μS0, μS1)’ and

Consider individual-causal effects:

with ΣΔ=A Σ A’,  μ Δ=(β, α)’, β = E(ΔTj) = μT1-μT0 , α =E(ΔSj)= μS1-μS0.

Define Individual Causal Association (ICA),  ρΔ = Corr(ΔTj, Δsj). Then:

Normally-distributed Endpoints, Single-trial 
Setting

27Ref: Alonso et al, Biometrics 2015



Assume σT0= σT1= σT and σS0 = σS1 = σS. Then

Only ρT0S0 and ρT1S1 are identifiable.

Hence, ICA is non-identifiable without making untestable 
assumptions. The assumptions influence the value of ρΔ.

Non-identifiability of ICA

28Ref: Alonso et al, Biometrics 2015



Average causal necessity: E(ΔTj|ΔSj  = 0) = 0

But

Thus, even if ρΔ
2=1, we get

Hence, causal necessity is not satisfied, unless we assume β=α=0.

Average Causal Necessity

29Ref: Alonso et al, Biometrics 2015



Average causal sufficiency: ∃ ω such that E(ΔTj | ΔSj>ω) >0

For truncated bivariate-normal

with λ(u)=φ(u)/(1-Φ(u)) , λ(u)>0.  

The average causal sufficiency is satisfied iff ρΔ>0.

30

Average Causal Sufficiency

Ref: Alonso et al, Biometrics 2015



Conider the individual causal effects in a multiple-trial setting. Let

Δij =(T1ij -T0ij , S1ij -S0ij ) ~ N2(μΔi ,ΣΔ) and μΔi ~ N2(μ*
Δ,DΔ).

Then

with (εΔTij, εΔSij)’ ~ N2(0, ΣΔ).   

Define the meta-analytic individual causal association MICA = Corr(ΔTij, ΔSij). 
It is equal to

with λT =dbb/σTT, λS =dbb/σSS

Individual Causal Effects in a Meta-analytic 
Setting

31Ref: Alonso et al, Biometrics 2015



If λT→+∞ and λS →+∞ , then ρM=Rtrial

(large between-trial variation → association between expected CA’s captured)

If λT→0 and λS →0 , then ρM= ρΔ

(small between-trial variation → association between individual CA’s captured)

Hence, MICA (ρM) evaluates validity of a surrogate across similar, but different 
populations (external validity).  ICA (ρΔ) does it only for a single, fixed 
population (internal validity). 

Some Properties of MICA (1)

32Ref: Alonso et al, Biometrics 2015



Let ρT0T1= ρS0S1=0. Then

If  Rind large, then ρΔ≈Rind. Hence, choosing a  surrogate with 
large Rtrial>0 and Rind>0 likely leads to a large ρM.

Thus, surrogates valid in the meta-analytic approach may also 
be valid in the causal-inference framework.

Some Properties of MICA (2)

33Ref: Alonso et al, Biometrics 2015



Large ρΔ (single-trial) may still give a low ρM (meta-analytic) if 
between-trial heterogeneity is larger than the within-trial one 
and expected causal association is low (small Rtrial).

Note that, as ICA, MICA is also not identifiable, unless untestable 
assumptions are made.

34

Some Properties of MICA (3)

Ref: Alonso et al, Biometrics 2015



Example: Age-related Macular Degeneration

35Ref: Alonso et al, Biometrics 2015

ρS0T0, ρS1T1, σS0S0, σS1S1, σT0T0, σT1T1 fixed  at the estimated values

Correlations in Σ fixed at values from {-1,-0.95,...,0, 0.05, ...,1}

414 matrices, leading to ρM

Substantial impact of the 
unidentified correlations

In 50% of the cases,  ρM>0.77. In <10% of the cases,  ρM>0.9.
Similar (inconclusive) results as for the MA approach.



Attention shifted to the association of expected causal effects. 

Surrogate successfully evaluated at the trial and individual-level 
in a meta-analytic context, may likely also successfully pass a 
validation exercise based on individual causal effects.

A surrogate successfully evaluated in a single trial using ICEs 
may fail to pass a similar evaluation in a meta-analytic context.

Three main advantages of the MA approach : 
(1) it has a causal interpretation (Joffe and Greene (2009)) , 
(2) it is identifiable under randomization; 
(3) it may be more appealing to regulatory authorities and, 

therefore, more useful for drug approval.

Causal-association & Meta-analytic 
Approach 

36Ref: Alonso et al, Biometrics 2015
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