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Refs:

Terminology

e Clinical endpoint:

a characteristic or variable that reflects how a patient feels,
functions, or survives

Biomarker:

a characteristic that is objectively measured and evaluated as
an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic
intervention

e Surrogate endpoint:

a biomarker that is intended to substitute for a clinical endpoint.
A surrogate endpoint is expected to predict clinical benefit (or
harm or lack of benefit or harm)

Biomarkers Definition Working Group, Clin Pharmacol Ther 2001, 69: 89;
De Gruttola et al, Controlled Clin Trials 2001, 22: 485.



Why Do We Need Surrogates?

Practicality of studies:

» Shorter duration

« Smaller sample size (?)

Avalilability of biomarkers:

» Tissue, cellular, hormonal factors, etc.
* Imaging techniques

« Genomics, proteomics, other -omics

Ref. Schatzkin and Gail, Nature Reviews (Cancer) 2001, 3



How To Define a Surrogate?

Key point: “A correlate does not a surrogate make”

—> correlation between S(urrogate) and T(rue endpoint) is
not a sufficient condition for validity

Ref: Fleming and DeMets, Ann Intern Med 1996, 125: 605.



A Correlate Does not a Surrogate Make
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Ref: Korn, Albert & McShane, Statist Med 2005:24:163



Validation Based on the Precision of
Prediction

“The effect of treatment on a surrogate endpoint must be
reasonably likely to predict clinical benefit”

Ref: Biomarkers Definition Working Group, Clin Pharmacol Ther 2001, 69: 89.



Meta-analytic Approach

Tij = g + BiZij + erij
Sij = Wsi + i Zij + €5

. < _ [ OTT OTs

Let (ug, 7y Bya)’ ~ normal.

Define p,;=(B;a)’ ~ Ny(15,D,), with Dy = (daa dﬂb)

dap dpp

Ref: Buyse et al, Biostatistics 2000



Prediction of True Endpoint From Surrogate

Endpoints observed on
individual patients

R2 (or R) indicates quality /
- of regression / 2
‘Q
o

True Endpoint

Surrogate Endpoint



Prediction of Treatment Effect:

Multiple Trials
1 4 , Treatment effects observed
R2 (or R) in all trials
Indicates '
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Meta-analytic Approach

Tij = g + BiZij + erij
Sij = Wsi + i Zij + Esij

, vy _ ( OTT OTs
(€7 £5)" ~ N5(0, L), with .= ( OTS 0SS )

Define R =04/ (07704)%°, if R 4= £1, surrogate valid at the individual-level
) R : laa d,
Hp=(Bra) ~ No(i ,D,), with Dy = ( ;’ab dbz )

Define R ,.,=d.,/(d,.d,,)°?> ; if R, = % 1, surrogate valid at the trial-level

rial

Ref: Buyse et al, Biostatistics 2000
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Example: Age-related Macular Degeneration

181 patients form 36 centers; placebo vs. interferon-a

S: change in visual acuity at 6 mths; T: change at 1 year

20

Bsoro = 0.7693
Dsir1 = 0.7118

0.7450 (Closy, = [0.6721, 0.8035])

True endpoint
-20

40

-60

Surrogate endpoint

Ref: Buyse et al, Biostatistics 2000; Alonso et al, Biometrics 2015 12



Example: Age-related Macular Degeneration

Trial level

Unweighted Weighted
Rivit 0.831 0.837
R . CI (0.691,0.911) (0.702,0.914)
daaa dbb 37 75.. 75.89
Individual level

Ripgq and CI

0.698,

CI=(0.479, 0.835)

Treatment effect on the true end point
-10

-15

-20
1

Treatment effect on the surrogate endpoint

Ref: Alonso et al, Biometrics 2015
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Causal-inference and Validation of
Surrogate Endpoints

Principal stratification (Frangakis & Rubin, Biometrics 2002)

Causal inference links for “proportion explained” (Taylor et al, Biometrics
2005)

Causal necessity and sufficiency (Gilbert & Hudgens, Biometrics 2008)
Causal paradigms (Joffe & Greene, Biometrics 2009)

Bayesian model, single trial (Li et al, Biometrics 2010)

Bayesian model, multiple trials (Li et al, Biostatistics 2011)

Principal stratification, normal endpoints (Conlon et al, Biostatistics 2013)
“Surrogate paradox” (VanderWeele, Biometrics 2013)

Link to the meta-analytic approach (Alonso et al, Biometrics 2015)

14



Causal Inference: Potential Outcomes and
Counterfactuals

Each subject has two potential outcomes for T: T, and T,

corresponding to the two treatments (Z= 0,1). Likewise for &.

Only one of these outcomes is observed, the other is counterfactual.

Example: binary data

Subject j Z; Ty T, Sy Sy
1 0 1 ? 1 ?
2 1 ? 1 ? 1
3 1 ? 0 ? 0
4 0 0 ? 1 ?
5 1 ? 1 ? 1
15




Causal Inference: Individual Causal Effects

The causal treatment effect on 7for subject j is A, =7,- T,

The causal treatment effect on Stor subject j is Ay =5, - 5,

The effects are unobservable, unless special designs, e.g., a
cross-over trial, are considered.

16



Causal Inference: Expected (Average)
Causal Effects

The expected (average) causal effect on 7'is 5= E(7;;-T,) = E(Ay
The expected (average) causal effect on Sis a = E(S5,;-5,) = E(Ay)

Under Stable Unit Treatment Value Assumption (SUTVA), and if
Z; L (Tp; T1,5,55,;) (plausible under randomization), then
B=E(T}|Z =1) - E(T;|Z =0) and a=E(§|Z =1) - (S| Z =0)

E(7;|Z =1), etc., can be estimated by the sample means.

Hence, the meta-analytic approach can be seen as the analysis of
the association of the expected causal effects.

2
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Causal-inference Paradigms for Validation
of Surrogate Endpoints

Two paradigms:

-The causal-effects (CE) paradigm, in which knowledge of the effects of the
treatment on the surrogate and of the surrogate on the clinical outcome is
used to predict the effect of the treatment on the clinical outcome.

Examples: Prentice (1989); Taylor et al (2005)

-The causal-association (CA) paradigm, in which the effect of treatment on
the surrogate is associated, across studies or population subgroups, with its
effect on the clinical outcome, so allowing prediction of the effect on the
clinical outcome from the effect on the surrogate

Examples: Frangakis & Rubin (2002); Buyse et al (2000)

Ref: Joffee & Greene, Biometrics 2009
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The Causal-effects Paradigm

7‘&’ 7‘1’ 7,‘(
_— 7 A s
Uses concepts of the direct and indirect effects. ; / / '\[ [ /N
A A U A X
Applicable in a single-trial setting. ® ®) )
R S =
Explains the treatment effecton T s/ \\ s/
“mechanistically”. s S /N
A~ X A U
(d) (e)
Drawbacks:
- 1 1 Figure 1. Causal diagrams for surrogate outcomes. (a) naive
ReqUIreS (untEStable) assumptlonS' causal relationship; (b) general causal surrogate; (¢) strong
_Lacks power_ sequential ignorability (equations (7) and (8)); (d) weak se-

quential ignorability (equations (7) and (9)); and (e) proxy

- Effects defined in terms of manipulation of  surrogate.
the putative surrogate, but in pracitce

interventions do not directly manipulate the
surrogate.

Ref: Joffee & Greene, Biometrics 2009 19



The Causal-association Paradigm

Considers association between expected causal effects.

Natural for the meta-analytic seting, though can be considered in a single-trial
setting (principal surrogacy).

In the meta-analytic setting, applicable using the observable quantities.
More powerful than the CE paradigm.
Drawbacks:

- Does not “explain” the treatment effect on 7; rather, evaluates its co-
variation with the effect on &S.

Ref: Joffee & Greene, Biometrics 2009 20



Principal Surrogate (1)

Frangakis & Rubin (2002): if no causal effect on S, then no
effecton 7.

Average causal necessity: E(A,{Ag;=0) =0
Note: values of Ag; define unobservable principal strata

Example: binary data

(TOj' TJ/')

(S5 S 1) (0,0) (0,1) (1,1) (1,0)  Principal stratification
(0,0) P11 D1y D13 P14 Never responders
(0,1) P2 P22 P23 P2s Improved
(1,1) P31 P32 P33 P34 Always responders
(1,0) Pa P42 P43 P 44 Harmed

Ref: Frangakis & Rubin, Biometrics 2002; Gilbert and Hudgens, Biometrics 2008; Joffe & Greene, 2009 21



Principal Surrogate (2)

Frangakis & Rubin (2002): if no causal effect on S, then no
effecton 7.

Average causal necessity: E(A,{Ag;=0) =0
Note: values of Ag; define unobservable principal strata

Example: binary data

(TOj' TJ/')

(S5 S 1) (0,0) (0,1) (1,1) (1,0)  Principal stratification
(0,0) D11 0 P13 0 Never responders
(0,1) P2 P22 P23 P 2a Improved
(1,1) D31 0 P33 0 Always responders
(1,0) Pa P42 P43 P 44 Harmed

Ref: Frangakis & Rubin, Biometrics 2002; Gilbert and Hudgens, Biometrics 2008; Joffe & Greene, 2009 22



Principal Surrogate (3)

Frangakis & Rubin (2002): if no causal effect on S, then no
effecton 7.

Average causal necessity: E(A,{Ag;=0) =0

Gilbert & Hudgens (2008): PS if average causal necessity and
Average causal sufficiency: 3 wsuch that E(A | Ag>w) >0

Ref: Frangakis & Rubin, Biometrics 2002; Gilbert and Hudgens, Biometrics 2008; 23



Dissociative & Associative Proportion

The causal effecton T is CET = p ., - P4
The dissociative proportionis defined as DP=((p,-p14) + (D33-P34)) / CET
The proportionis defined as AP=((p,,-p,4) + (P4y-P4s)) /| CET

(Ty Ty
(S5 S 1) (0,0) (0,1) (1,1) (1,0) Principal stratification

(0,0) P11 - P13 - Never responders

(0,1) P21 P22 P23 P24 Improved

(1,1) D31 - D33 - Always responders

(1,0) Py P4 P43 P 44 Harmed

Note : the “proportions” are ratios of differences; their values span [-o, 4+x]
which is undesirable for a proportion

Ref: Li et al, Biostatistics 2011:12:478.

24



Dissociative & Associative Proportion for a
Principal Surrogate

The dissociative proportion should be 0.

Additionally, for a “perfect” principal surrogate, we would like p,, and p,, to
be 0. Hence, the proportionshould be 1.

(TOj' T]j)
(805 S1) (0,0) (0,1) (1,1) (1,0) Principal stratification

(0,0) P11 - P13 - Never responders

(0,1) P2 P2 P23 o Improved

(1,1) D31 - D33 - Always responders

(1,0) P e P a3 P 44 Harmed

25



What Is Observed?

T
S 0 1
0 0 P1utPi2tPutDo P13tP1atPtDoy
1 P31t P35t PutPa P33tPs3atPastPas
1 0 PutPiutPutpPa PratP 13t PitPys
1 PotPoputPntPay P22t D 3t Pt Pas

15 “free” parameters, 6 supported by data

Estimation of, e.g., DP & AP requires (untestable) identifying

restrictions.

* Forinstance, montonicity (py,=p4,=Pa3=Psasa=P14=P24=P3,=0) reduces the

number of “free” parameters to 8

» Extra assumptions in a form of, e.g., priors in a Bayesian approach

26



Normally-distributed Endpoints, Single-trial
Setting
Consider Y=(7;T7;50,5;)" ~ Ny( Z) with p=(t7p p175 Usp Hs7)" and

Ororo Oror1 |OT0s0 010581

Ororl Ori71|97150 OT1151

Oroso 07150095050 5051

Orps1 07118105081 05181

: e T . — Th.
Consider individual-causal effects: A; = AY; = ( R0

Sy sﬂj)

with2,=AZ A, pu,=(p @), f=E(Ar) = trtre, a=E(Dg)= ls;-lsp

Define /ndividual Causal Association (ICA), p, = Corr(Az Ay). Then:

) VOTOTOO 5050 L1050 + A/OT1T105151 PT151 — /OT1T105050 LPT150 — A/OTO0T0TS151 LTOS1
Iﬁ : 1
\/(Jmm + orir1 — 24/0ror007T171 Pror1) (Os0so + 5151 — 24/0s05005151 Lsos1)

Ref: Alonso et al, Biometrics 2015 27



Non-identifiability of ICA

Assume o0,,~= 0,,= o,and og,= 0;= 04 Then

__ Proso t+ Prist — PT1s0 — Pr0s1
2v/(1 — pror1) (1 — psost1)

Only p,,s,and p,, ¢, are identifiable.

Hence, ICA is non-identifiable without making untestable
assumptions. The assumptions influence the value of p,.

Ref: Alonso et al, Biometrics 2015
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Average Causal Necessity

Average causal necessity: E(A;[Ag=0) =0

1 — psost

BUt or { 1— prort | 9
AgilAgi~ N B+ J_s Pa(ﬂ-s; —a), 207(1— px)(1 — pror1)

o 1 —
Thus, even if p,2=1, E (Arj|Ag =0) = B £ \/ ! ( pm”) a # 0

gg I — £5s0S1

Hence, causal necessity is not satisfied, unless we assume f=a=0.

Ref: Alonso et al, Biometrics 2015 29



Average Causal Sufficiency

Average causal sufficiency: 3 wsuch that E(A | Ag>w) >0

For truncated bivariate-normal

3 w— o
E(Ag|Ag = w) = ppp, = B+ Pa.\/zﬂr (1 — prori) » x .
\/Qﬂs (1 — psos1)

with A(u)=p(u)/(1-®(u)), A(u)>0.

The average causal sufficiency is satisfied iff p,>0.

Ref: Alonso et al, Biometrics 2015 30



Individual Causal Effects in a Meta-analytic
Setting

Conider the individual causal effects in a multiple-trial setting. Let

( 1~ 01/' 11/ 01/) NZ(“’AI’ )and:uAI'NNZ(AU*A'DA)'

Then
{ Arnj =Bi + eanj

Asij =0t 4 Ensij

with (&, Tip EASI'/')’ ~ N,(0,%,).
Define the meta-analytic individual causal association MICA = Corr(Az; Ag).

It is equal to

VArhs Ririal + 24/ (1 — pror1) (1 — psost) pa
\/;’hrls + 207 (1 — psos1) + 2As (1 — pror1) +4 (1 — pror1) (1 — PSEISl)I

with A,=dy,/ orp Ag=dy,/ O

Py =

Ref: Alonso et al, Biometrics 2015 31



Some Properties of MICA (1)

VATAs Ripja] + 2\/(1 — pror1) (1 — psost) Pa
\/;’tris + 207 (1 — psos1) + 2As (1 — prort) +4 (1 — pror1) (1 — F'Sﬂsi)l

Py =

[f A,»+0o0 and A;—>+0o0, then p,~R, .,
(large between-trial variation — association between expected CA’s captured)
If 1,0 and A,—0, then p,~ p,

(small between-trial variation — association between individual CA’s captured)

Hence, MICA (p,,) evaluates validity of a surrogate across similar, but different
populations (external validity). ICA (p,) does it only for a single, fixed
population (internal validity).

Ref: Alonso et al, Biometrics 2015 32



Some Properties of MICA (2)

Let pryr= Psps;/=0. Then

\/ dbbdaa Rtrial + 2\/ O705 PA
‘\/(dbb + QUT) (daa + QGS)I

PM =

If R 4large, then p,~R ;. Hence, choosinga surrogate with

large R,;,;>0 and R ;>0 likely leads to a large p,,

ria

Thus, surrogates valid in the meta-analytic approach may also
be valid in the causal-inference framework.

Ref: Alonso et al, Biometrics 2015
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Some Properties of MICA (3)

VArhs Rizial + 21/ (1 — pror1) (1 — psost) pa
\/;‘hrf‘»s + 2hr (1 — psos1) + 24s (1 — pror1) +4 (1 — prori) (1 — psos1)

Py =

Large p, (single-trial) may still give a low p,, (meta-analytic) if
between-trial heterogeneity is larger than the within-trial one
and expected causal association is low (small R ,).

Note that, as ICA, MICA is also not identifiable, unless untestable

assumptions are made.

Ref: Alonso et al, Biometrics 2015 34



Example: Age-related Macular Degeneration

Psoro Psito Ososo Osisp Ororo Oy fiXed at the estimated values

Correlations in X fixed at values from {-1,-0.95,...,,0, 0.05, ...,1}

41* matrices, leading to p,,

Substantial impact of the _—
unidentified correlations ) M,—rﬂ—ﬁ

|
In 50% of the cases, p,~0.77.In <10% of the Cas:és, 02,/ 0.9.
Similar (inconclusive) results as for the MA approach.

Ref: Alonso et al, Biometrics 2015 35



Causal-association & Meta-analytic
Approach

Attention shifted to the association of expected causal effects.

Surrogate successfully evaluated at the trial and individual-level
in a meta-analytic context, may likely also successfully pass a
validation exercise based on individual causal effects.

A surrogate successfully evaluated in a single trial using ICEs
may fail to pass a similar evaluation in a meta-analytic context.

Three main advantages of the MA approach :

(1) it has a causal interpretation (Joffe and Greene (2009)),
(2)itis identifiable under randomization;

(3)it may be more appealing to regulatory authorities and,
therefore, more useful for drug approval.

Ref: Alonso et al, Biometrics 2015
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